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Table 16-1 Major Types of Intermediate Filament Proteins in Vertebrate Cells

Nuclear lamins A, B, and C nuclear lamina (inner lining
of nuclear envelope)
Vimentin-like vimentin many cells of mesenchymal
origin
desmin muscle
glial fibrillary acidic protein glial cells (astrocytes and
some Schwann cells)
peripherin some heurons
Epithelial type | keratins (acidic) epithelial cells and their
type Il keratins (basic) derivatives (e.g., hair and nails)
Axonal neurofilament proteins neurons

(NF-L, NF-M, and NF-H)

Table 16-1 Molecular Biology of the Cell (© Garland Science 2008)
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Table 16-2 Drugs That Affect Actin Filaments and Microtubules

Phalloidin binds and stabilizes filaments
Cytochalasin caps filament plus ends
Swinholide severs filaments
Latrunculin binds subunits and prevents their polymerization

| MICROTUBULE-SPECIFICDRUGS
Taxol binds and stabilizes microtubules
Colchicine, colcemid binds subunits and prevents their polymerization
Vinblastine, vincristine  binds subunits and prevents their polymerization
Nocodazole binds subunits and prevents their polymerization

Table 16-2 Molecular Biology of the Cell (© Garland Science 2008)
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Figure 16-31a Molecular Biology of the Cell (© Garland Science 2008)
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Figure 16-32a Molecular Biology of the Cell (© Garland Science 2008)
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Figure 16-34d Molecular Biology of the Cell (© Garland Science 2008)
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Figure 16-45b Molecular Biology of the Cell (© Garland Science 2008)
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Figure 16-50a Molecular Biology of the Cell (© Garland Science 2008)
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Figure 16-56a Molecular Biology of the Cell (© Garland Science 2008)
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Figure 16-58b Molecular Biology of the Cell (© Garland Science 2008)
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= o JActin filament ATTACHED At the start of the cycle shown in this figure, a
minus O /f /)[ Y™ ) myosin head lacking a bound nucleotide is locked tightly
end ﬁ Y onto an actin filament in a rigor configuration (so named
= & because it is responsible for rigor mortis, the rigidity of
death). In an actively contracting muscle, this state is very
short-lived, being rapidly terminated by the binding of a
molecule of ATP.

..(—A\/’:/:\fz{ W™ ~b<(; 57 “back” of the head (that s, on the side furthest from the actin
< Vé{ ;ﬁa
WV WWVN

RELEASED A molecule of ATP binds to the large cleft on the

/\ filament) and immediately causes a slight change in the
- conformation of the domains that make up the actin-binding
myosin site. This reduces the affinity of the head for actin and allows
thick filament it to move along the filament. (The space drawn here

between the head and actin emphasizes this change,
although in reality the head probably remains very close to
HYDROLYSIS the actin.)

COCKED The cleft closes like a clam shell around the ATP
molecule, triggering a large shape change that causes the
head to be displaced along the filament by a distance of
about 5 nm. Hydrolysis of ATP occurs, but the ADP and
inorganic phosphate (P;) produced remain tightly bound to
the protein.

FORCE-GENERATING A weak binding of the myosin head to
a new site on the actin filament causes release of the
inorganic phosphate produced by ATP hydrolysis,
concomitantly with the tight binding of the head to actin.
This release triggers the power stroke—the force-generating
change in shape during which the head regains its original
conformation. In the course of the power stroke, the head
loses its bound ADP, thereby returning to the start of a new
cycle.

ATTACHED At the end of the cycle, the myosin head is
again locked tightly to the actin filament in a rigor
configuration. Note that the head has moved to a new
position on the actin filament.

Figure 16-61 Molecular Biology of the Cell (© Garland Science 2008)
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myosin head death). In an actively contracting muscle, this state is very
short-lived, being rapidly terminated by the binding of a
molecule of ATP.

ATP
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OU' A AN filament) and immediately causes a slight change in the
. conformation of the domains that make up the actin-binding
myosin site. This reduces the affinity of the head for actin and allows
thick filament it to move along the filament. (The space drawn here

between the head and actin emphasizes this change,
although in reality the head probably remains very close to
j HYDROLYSIS the actin.)

COCKED The cleft closes like a clam shell around the ATP
molecule, triggering a large shape change that causes the
head to be displaced along the filament by a distance of
about 5 nm. Hydrolysis of ATP occurs, but the ADP and
inorganic phosphate (P;) produced remain tightly bound to
the protein.
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COCKED The cleft closes like a clam shell around the ATP
molecule, triggering a large shape change that causes the
head to be displaced along the filament by a distance of
about 5 nm. Hydrolysis of ATP occurs, but the ADP and
inorganic phosphate (P;) produced remain tightly bound to
the protein.

FORCE-GENERATING A weak binding of the myosin head to
a new site on the actin filament causes release of the
inorganic phosphate produced by ATP hydrolysis,
concomitantly with the tight binding of the head to actin.
This release triggers the power stroke—the force-generating
change in shape during which the head regains its original
conformation. In the course of the power stroke, the head

loses its bound ADP, thereby returning to the start of a new
POWER STROKE ADP cycle.
minus ' ) ) plus ATTACHED At the end of the cycle, the myosin head is
end yend again locked tightly to the actin filament in a rigor

configuration. Note that the head has moved to a new
position on the actin filament.

Figure 16-61 (part 2 of 2) Molecular Biology of the Cell (© Garland Science 2008)
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Figure 16-70b Molecular Biology of the Cell (© Garland Science 2008)
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Figure 16-74 Molecular Biology of the Cell (© Garland Science 2008)
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Figure 16-75 Molecular Biology of the Cell (© Garland Science 2008)
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Figure 16-77b Molecular Biology of the Cell (© Garland Science 2008)
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Figure 16-79 Molecular Biology of the Cell (© Garland Science 2008)
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Figure 16-81a Molecular Biology of the Cell (© Garland Science 2008)

outer dynein arm

radial spoke

inner sheath

. nexin
central singlet

microtubule

inner dynein arm

A microtubule B microtubule,

outer doublet microtubule

Figure 16-81b Molecular Biology of the Cell (© Garland Science 2008)




Figure 16-82a Molecular Biology of the Cell (© Garland Science 2008)

-~ ‘?5”“

»

A . z

r 4 -
"t "

“

Figure 16-82b Molecular Biology of the Cell (© Garland Science 2008)




68

&
*
+ + + +
linking + ik
& proteins
+ATP E
E
2
(A) IN ISOLATED DOUBLET (B) IN NORMAL
MICROTUBULES: DYNEIN FLAGELLUM: DYNEIN
PRODUCES CAUSES MICROTUBULE
MICROTUBULE SLIDING BENDING
Figure 16-83 Molecular Biology of the Cell (© Garland Science 2008)

+ATP

&

IN ISOLATED DOUBLET
MICROTUBULES: DYNEIN
PRODUCES
MICROTUBULE SLIDING

Figure 16-83a Molecular Biology of the Cell (© Garland Science 2008)




69

linking +
proteins

IN NORMAL
FLAGELLUM: DYNEIN
CAUSES MICROTUBULE
BENDING

Figure 16-83b Molecular Biology of the Cell (© Garland Science 2008)

Figure 16-84a Molecular Biology of the Cell (© Garland Science 2008)

100 nm




70

Figure 16-84b Molecular Biology of the Cell (© Garland Science 2008)
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Figure 16-87c Molecular Biology of the Cell (© Garland Science 2008)
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Figure 16-88b,c Molecular Biology of the Cell (© Garland Science 2008)
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Figure 16-103b Molecular Biology of the Cell (© Garland Science 2008)
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